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IMPROVED PATTERN RECOGNITION TECHNIQUES FOR REAL TIME OPERATION
INTRODUCTION

Passive infrared spectrometers have come into recent use for remote sensing
of atmospheric pol]utantsl'lo. These devices consist of a Fourier transform
‘nfrared (FTIR) spectrometer in which the infrared source has been removed and
a set of specialized input optics added. The use of passive FTIR instruments
is based on the premise that most gaseous species exhibit a spectral signature
in the infrared regfon that will be superimposed on the normal background
infrared emission in the field-of-view of the spectrometer. When controlled
by a dedicated computer and appropriate software, the instrument can serve as
an automated alarm system for the detection of specific target gases.

Applications for passive FTIR instruments have included both statfonary
and mobile environments. Recently, increased attention has been given to the
mobile application for the following reasons: (1) the instrument is allowed
to operate in the cleaner environment of a ground or airborne vehicle; (2) a
single instrument can be used to monitor a larger area; and (3) with fewer
instruments needed, more highly trained personnel can be used to oversee the
installation, maintenance, and operation of the system.

In a mobile application, the spectrometer must be able to operate against
a variety of infrared spectral backgrounds and must be able to resist the
effects of rapid background changes. In a high-speed vehicle (e.g. helicopter
or other aircraft), the data processing tasks must be accomplished rapfidly.
This includes the complete decision-making procedure for the determination of
the presence or absence of the target analyte(s)., Additionally, for the
system to be practical, the infrared instrumentation must be both reliable and
economical. Both reliability and cost are inversely related to the degree of
sophistication required in both the instrument and the controlifng computer,
Further, the required sophisticattion of both the infrared instrumentation and
the computational hardware i1s directly related to the amount of data that must
be collected and the requirements for processing that data.

This report describes efforts at the University of Iowa to reduce both
instrumental and computational requirements for passive Infrared sensors
through the development of novel data processing algorithms. In addition,
algorithms are being sought that are resistant to changes in the infrared
background. These algorithms are described in detafl and evaluated with a
variety of test data.

EXPERIMENTAL SECTION

A passive infrared interferometer was constructed by Honeywell
Corporation to specifications provided by the U.S. Army Chemical Research,
Development, and Engineering Center, Edgewood, MD., The system consisted of a
flex-pivot "porch swing™ Michelson interferometer based on the design of
walker and Rexll, The spectrometer used a 1iquid-nitrogen cooled Hg:Cd:Te
detector to collect spectral background radifation from the 8 to 12 micron
region. For the work reported here, 1024~point interferograms were collected,
with a corresponding spectral resolution of approximately 4 em~l. The
standard data collection rate for this instrument was 5 interferograms/sec.

In order to test the feasibility of a mobile application for the sensor
and to collect data under a variety of background conditions, the spectrometer
was mounted on a shock-absorbing platform and placed in both a helicopter and




a ground vehicle. Several runs of data were collected at a variety of speeds
and distances from ground sources of SFg and dimethyl methylphosphonate
(DMMP), These gases were used to simulate the presence of target analytes
that should be detected by the spectrometer. SFg has a single strong
absorption at 940 cm~1, while DMMP has characteristic bands at 820, 910, and
1040 cm~l, The data collection was performed at Edgewood, MD and Dugway, UT.
The collected interferograms were written onto magnetic tape and shipped to
the University of Iowa where the algorithm development work was performed.
A1l computer software used in this work was written in FORTRAN 77 and
implemented on a PRIME 9955 interactive computer system operating at the
Gerard P. Weeg Computing Center at the University of Iowa. Some computations
made use of subroutines from the IMSL statistical package (IMSL, Inc.,
Houston, TX). Some graphics output made use of the TELAGRAF interactive
graphics package (Integrated Software Systems Corp., San Diego, CA). A
Hewlett-Packard 7475A digital plotter was used as the output device,

RESULTS AND DISCUSSION

In a passive FTIR spectrometer, the initial infrared data is collected in
the form of an interferogram, a composite waveform composed of perjodic
signals corresponding to each of the detected infrared frequencies. In
conventional spectral processing, a Fast Fourier Transform (FFT) is applied to
the interferogram to decompose it, thereby obtaining the amplitudes of the
individual frequency components present. Taken together, these amplitudes
define the spectrum of infrared 11ght being detected by the spectrometer. The
characteristic infrared frequencies of any chemical compounds present are
superimposed on this overall spectrum as either absorption or emission bands.
Figure 1 depicts a typical 1024-point FTIR interferogram, and Figure 2
displays the corresponding spectrum yielded by the FFT, The arrow in Figure 2
points to the characteristic band of SFg, arising here as an absorption (i.e.
a decrease in 1ight intensity).

In conventional processing algorithms, the detection of a target gas
begins with the collection of a representative backgrnund emission
interferogram and an interferogram collected with the potential toxic gas
source in the field-of-view of the instrument. The FFT Is then applied to the
collected interferograms., The difference spectrum resulting from subtracting
the sample and background spectra is analyzed for the spectral signature of
the compound being monitored. Under conditions in which the background is
changing, however, the differerce spectrum can contain anomalous features,
possibly resulting in either false alarms or missed alarms,

As an illustration, the interferogram depicted in Figure 1 was collected
when the spectrometer was mounted in a helicopter flying at 25 knots and at an
altitude of approximately 200 feet. A reference spectrum was obtained by
transforming an interferogram collected two seconds earlier. Based on the
position of the helicopter and an inspection of the spectrum, no SFg is
indicated 1n this reference spectrum. The spectrum in Figure 2 (i.,e. the
sample spectrum in this example) and the reference spectrum were each
normalized to unit area to correct for overall differences in infrared
intensity. Figure 3 depicts the difference spectrum obtained by subtracting
the reference spectrum from that of the sample. The SFg absorption remains
evident, but a number of spectral artifacts have been {ntroduced that may
interfere with numerical decision-making algorithms designed to produce a yes
or no regarding the presence of SFg.
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Figure 1. A 1024-point interferogram collected by a passive FTIR spectrometer
mounted on a helicopter. Light intensity detected is plotted vs.
interferogram point number. The interferogram has been rotated such that the
maximum intensity (center burst) is at point 1. A ground source of SFg was in
the field-of-view of the instrument when this interferogram was collected.
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-yure 2, The spectrum arising from the application of the FFT to the
interferogram depicted in Figure 1. Light intensity 1s plotted vs. spectral
frequency (cm~l), The absorption band due to the presence of SFg is indicated
by the arrow.
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By way of comparison, the results of a typical laboratory spectral
subtraction are depicted in Figure 4, A normalized reference spectrum was
subtracted from a sample spectrum of butyric acid to produce the difference
spectrum shown in the figure. These spectra were collected on an IBM MG8
laboratory FTIR spectrometer under stable background conditions. The
characteristic absorption bands of butyric acid are clearly evident against a
flat baseline, This example clearly demonstrates the severity of the
artifacts introduced in Figure 3 by an unstable spectral background.

A variety of techniques have been investigated to help overcome the
presence of these artifacts., Digital filters have been employed to attempt to
discriminate against the artifacts. In addition, attempts have been made to
characterize common background features in hopes of accounting for the
presence of background changes. Al1l such methods are inherently 1imited,
however, as an infinite varfety of possible background changes exist.

Extensive inspections of spectra collected under moving background
conditions reveal one overriding principle: spectral subtraction 1s a
laboratory procedure based on the assumption that a stable spectral background
can be established. The use of spectral subtraction techniques under
conditions of changing backgrounds is an invalid application of the technique.

Motivation for Alternative Algorithm Development Work

The spectral subtraction procedure described above is useful in a
laboratory environment because 1t represents a conceptually simple way to
extract an absorption or emission band from the infrared background response,
provided the background response {is known. The procedure is applied to
spectra because the FFT represents the conceptually simplest way to remove
information regarding spectral frequencies not pertinent to the detection of
the analyte, ‘

Often, the conceptually simplest approach to a data analysis problem is
not the most computationally efficient. The standard Cooley-Tukey FFT
requires over 10,000 multiplications for a single 1024~-point interferogram.
Additionally, as argued in the discussion above, this conceptually simplest
approach based on spectral subtraction 1s not really appropriate for the
present application, The goal for our research has been to develop a data
processing algorithm for mobile passive FTIR spectrometers that makes better
use of the available computational resources, while, at the same time,
overcoming the problems of changing spectral backgrounds.

As motivated above, the goal for such an algorithm is twofold. First,
the information pertaining to the characteristic frequencies of a target
molecule must be separated from the {nformation pertaining to other
frequencies. Second, any absorption or emission band present in the frequency
window of interest must be extracted from the spectral baseline. This
extracted informat{on can then be used with a standard decision-making
(pattern recognition) algorithm to produce a yes/no response regarding the
presence of the target analyte.

As information regarding the characteristic frequencies of a target
molecule is also present in the raw interferogram, it can be argued that use
of the Fourier transform is an inefficient strategy for frequency selecticn.
The problem with an interferogram—based analysis, however, centers on the
composite nature of the waveform, The periodic signals corresponding to the
individual frequencies co-add to form the interferogram. Information
regarding the specific frequencies of interest is therefore obscured by
frequency information that has no bearing on determining the presence of the
target compound.

This problem is illustrated by an inspection of Figure 5. Segments
(points 175-250 in the 1024-point rotated interferogram) from six

12
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Figure 3. Difference spectrum resulting from the subtraction of a background
reference spectrum from the sample spectrum of Figure 2. Difference in

intensity 1s plotted vs. frequency (em~1), The artifacts introduced are due
to changes in the background between the times the two spectra were collected.
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Figure 4. A typical laboratory difference spectrum showing the absorption
bands of butyric acid superimposed on a flat baseline. Difference in

intensity is again plotted vs. frequency (cm~l), This type of spectrum
results when a stable spectral background :xists.
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interferograms are plotted. Figure 6 depicts the region of 900-1000 em~! fn
the corresponding transformed and normalized spectra. Counting from the top
of the figure, spectra 3, 5, and 6 appear to contain SFg information, although
the bands are very weak. It is apparent from an inspection of Figure S,
however, that it would be difficult, at best, to base a detection procedure on
the raw Interferogram Information_alone.

Time-domain digital fi1terslZ? are mathematical transforms that operate on
time-domain data in a frequency~dependent manner, The result of the
transformation is a filtered time-domain signal that has had information
pertaining to certain frequencies suppressed. The frequency dependence of a
filter is encoded in its frequency response function. In effect, this
function 1s a spectrum that defines which frequencies the filter will pass.
Figure 7 demonstrates the action of such a filter in the spectral domain., The
upper plot in the figure is the same passive FTIR spectrum depicted in Figure
2. The middle plot is a filter frequency response function centered on the
SFg absorption band. This is a_Gaussian-shaped function with a full-width at
half-maximum (FWHM) of 71.1 cm~l., The result of applying this filter to the
FTIR spectrum is depicted at the bottom of the figure. The fiiter effectively
extracts the SFg band from the spectral baseline.

The above discussion focused on the familiar spectral domain. The
advantage of a time-domain filter, however, is that a filter with the
frequency response depicted 1n Figure 7 can operate directly on the
interferogram, producing a filtered interferogram whose transformed spectrum
is identical to that shown at the bottom of the figure. In this manner, the
Fourfer transform has been avoided and the spectral band of interest has been
extracted from the baseline.

Figures 8-11 demonstrate graphically that an interferogram-based
detection scheme is a feasible, straightforward approach to the passive FTIR
detection problem. Figure 8 depicts, from top to bottom, a Gaussian-shaped
filter frequency response, the spectrum resulting from applying this filter to
a synthetic Lorentzian absorption band, and the spectrum resulting from
applying the filter to a synthetic Lorentzian emission band. The two
Lorentzian bands are identical in shape, width, and area.

If the inverse FFT is applied to the three spectra, the corresponding
interferograms are obtained. Figures 9-11 depict points 1-50, 50-150, and
150-250, respectively, in these three computed interferograms. An inspection
of these figures reveals three fundamental facts that allow an interferogram=-
based detection scheme to work.

First, a separation of information exists in the interferogram based on
the width of the spectral feature. The three segments in Figure 9 are
identical. This indicates that the bulk of the information pertaining to the
Gaussfan filter function 1s contained in the first 50 interferogram points.
The time-domain form of the Gaussian has effectively damped out by point 110.
The information from points 110-250 pertains almost entirely to the Lorentzian
band. This observation implies that only a short segment of the interferogram
may be necessary in order to detect the presence of a particular spectral
band. By collecting only a short segment (termed windowing the
interferogram), instrumental requirements are reduced and many background
artifacts are automatically eliminated.

Second, the only difference between the absorption and emission spectra
exists in the region of points 50-100, Beyond point 100, the signals are
1identical in magnitude, differing only in phase. Stated differently, the
lower two plots in Figure 11 are exact mirror images. This observation
confirms that absorption and emission bands can be detected in the
interferogram with equal ease,

Third, information regarding the intensity of the absorption or emission
band is encoded in the intensity of the periodic interferogram signal produced

14
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Figure 5. Segments from six passive FTIR interferograms. Light intensity is
plotted vs. interferogram point for points 175-250.
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Figure 6. The regfon from 900-1000 cm~l s plotted in the transformed spectra
corresponding to the interferograms from which the segments in Figure 5 were
drawn. Small SFg bands around 940 cm™l are evident in the third, fifth, and
sixth spectra, counting from the top of the figure.
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Figure 7. The frequency-dependent action of a digital filter. From top to
bottom: a typical passive FTIR spectrum, a filter frequency response
function, the result of applying the filter to the spectrum.

-

== =

o e e e LS 00

Figure 8, Three spectra are plotted from 650-1250 cm-1, Top: A Gaussian
filter frequency response. Middle: The result of applying this filter to
extract a Lorentzian absorption band. Bottom: The result of extracting an
fdentical Lorentzfan emission band.
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Figure 9. Points 1-50 in the interferograms corresponding to the three
spectra in Figure 8.
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Figure 10. Points 50-150 in the interferograms corresponding to the three
spectra in Figure 8,
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rigure 11, Points 150-250 in the interferograms corresponding to the three
spectra in Figure 8.

by the band. This suggests that a possible qualitative indicator of the
presence of an absorption or emission may be a simple power calculation (e.g.
sum of squares of intensity) over an appropriate interferogram segment.
Moreover, such a computed value may have quantitative spectral informatfon
also.

The above discussion demonstrates unequivocally that the combination of
windowing the interferogram and applying a time-domain digital filter can be
used to detect the presence of specific absorption or emission bands. Through
this procedure, the band information can be extracted from the infrared
background without the need for the Fourier transform or for any type of
spectral subtraction or background characterization. The development and
application of this methodology to passive FTIR data will now be discussed.

Development of Digital Filtering Methodology

Mathematical Background. In the discussion above, the frequency-domain
form of a digital filter was applifed to a spectrum by muitiplying the spectrum
by the frequency response function of the filter. This calculation has a
corresponding form in the time domain that i1s expressed by the convolutfon
integral

-]
y(t) = [h(kIx(t=k) dk = H(FIX() (1)
-

where y(t) 1s the filtered interferogram, the product, H(f)X(f), is the
filtered spectrum, H(f) is the frequency response of the filter, X(f) is the
transformed spectrum, x(t) {is the raw interferogram, and h(t) is the inverse
Fourier transform of the frequency response, termed the impulse response of
the filter. The terms, H(f) and X(f), are functions of frequency; f, while
the terms, y(t), x(t), and h(t), are functions of the time variavies, t or k.

The above equation pertains to continuous functions., For digitized data,
the discrete convolution integral has the form
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Yt = X brx¢-k (2)

k=-0

where y¢ 1s one point on the filtered interferogram, and hy and xt.i define
discrets points on the impulse response function and interferogram,
respectively. Given that the interferogram is only sampled over a finite
range, the discrete form of the convolution integral must be approximated by
use of a finite series of terms. This approximation most often takes the form

where n+l terms are summed to estimate each filtered interferogram point, y¢.
The terms, hy, can be considered weighting coefficients that determine the
frequency dependence of the filter. Effectively, each filtered interferogram
point 1s formed from a 1inear combination of the corresponding raw data point
and a set of preceding raw data points. This type of filiter, defined by the
hg» 1s termed a finite impulse response (FIR) filter.

The hx terms must be found that best approximate the action of the filter
frequency response function. This 1s most often accomplished by forming a
polynomfal series approximation to the frequency response. By approximating
the frequency response with a finite series of terms, the hy can be computed
by direct calculation. The Remez exchange methodl3:14 {g perhaps the most
commonly used algorithm for generating a finite series approximation of the
frequency response function,

As discussed previously, the passive FTIR application requires the
development of narrow-bandpass filters that can i1solate specific spectral
bands. Unfortunately, as the bandpass narrows, it takes increasingly more
terms to approximate the frequency response., This causes the corresponding
time~domain filter to become increasing large in terms of the number of hy
required. Filters generated for the passive FTIR application by this
conventional approach often required as many as 100 terms. Even if a 100-term
filter is only applied to 100 interferogram points, 10,000 multiplications are
required. This results in no savings over applying the FFT to the entire
interferogram. For this reason, it was judged essential that methodology be
developed for reducing the number of required filter terms.

Approach to FIR Filter Generation. As noted, eq. 3 is a
11near model that relates a filtered interferogram point, y{, to a series of
raw interferogram points, x¢.n. Regression analysis is the branch of
statistics that focuses on techniques for the construction and evaluation of
such models. In regression terms, the y; define a dependent variable, while
the x4. define a set of independent variables. The hy are regression
coefficients.

It was judged potentially fruitful to investigate the application of
regression techniques to the construction of FIR filters. Two motivating
factors led to this conclusion, First, in any regression model, some
independent varfables are always more statistically significant than others.
These significant variables contribute most to the explanation of variance in
the dependent variable. It was hypothesized that if regression procedures
could be used to estimate the hy, 1t may be possible to delete some of the xi.p
terms as being insignificant. The resulting filters would thus have fewer
terms. Second, an inspection of eq. 1 reveals that, in a conventional FIR
filter, the h depend only on the frequency response function. In one sense,
this 1s an advantage in that a set of hg can be used to filter any type of
time-domain signal and any segment of that signal. For the present
application, however, the only time-domain signal encountered is the
interferogram produced by the interferometer and detector of the passive FTIR
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spectrometer. Moreover, as demonstrated previously, 1t should be possible to
filter only a short segment of that interferogram. It was hypothesized that
fewer filter terms would be required if a regression approach could be used to
derive a set of hy that are dedicated to filtering specific segments of
passive FTIR interferograms.

Geperation of FIR Filters by Stepwise Regression. The generation of an
FIR filter via regression methodology begins as before with the definition of
the frequency response of the filter. For example, to generate an SFg filter,
a Gaussian function would typically be defined, centered at the SFg peak
maximum and possessing a certain width. The exact position and width of the
bandpass define parameters to be optimized. As noted previously, if this
Gaussian function is multiplied by a sample spectrum, a filtered spectrum
results. The inverse Fourier transform of this filtered spectrum 1s a
corresponding filtered interferogram. If the desired time-domain filter were
available, the action of the filter on the sample interferogram would produce
a filtered interferogram identical to that obtained through the Fourier
transform/Gaussian multiplication/inverse transform step outlined above.

Thus, points in this generated filtered interferogram define the dependent
variable for the regression analysis. The specific points used would be those
defining the interferogram segment for which the dedicated filter is desired.
The selection of which points to use reflects an additional parameter to be
optimized.

A standard multiple 11near regression analysis can thus be performed to
derive the desired hy. In this calculation, a pool of potential independent
variables can be used at k=0, ..., Ppay. These variables would be derived
from points 1n the same raw Interferogram whose transformed spectrum was used
in the generation of the dependent variable. The specific interferogram
selected for the computation does not appear to matter, although i1t has been
common practice throughout this work to base the calculation on an
interferogram whose spectrum contains the spectral band that is serving as the
target of the filter development,

A stepwise regression algorithmlS 1s used to select those x¢-k that
contribute most to the model. This algorithm begins by selecting the single
independent variable that has the highest correlation with the dependent
variable. A one-term model is then formed based on this selected variable.
Consecutive terms are added to the model in a stepwise manner. At each step,
the varfables remaining in the pool are evaluated for their correlation with
the varfance in the dependent variable that has not been explained by the
terms previously selected. The variable chosen though this procedure is added
to the model, and the process is repeated until no remaining variables in the
pool meet a minimum standard of correlation. This correlation test is
typically referenced to a statistical E-distribution.

As an example, an SFg filter for interferogram points 175-250 was
generated based on a Gaussian_frequency response centered at 941.1 em~l and
possessing a FWHM of 54.0 em~l. An interferogram collected during a ground-
based data run was used in the regression procedure. The interferogram was
normalized based on the sum of squares of points 175-250., This normalization
method, based on the selected segment, is the best method found for correcting
for differences in overall infrared energy between interferograms. For the
stepwise regression, a pool of varfables was used from k=0 to 70. To be
selected, variables had to be significant at the 95% level, based on the E-
distribution, The regression procedure yielded a 20-term filter. The
correlation coefficient for the regression was 0.992, corresponding to 98.39%
(100 times 0.992 squared) of the variance in the dependent variable befing
explained by the derived model,

Figure 12 presents the results of applying this filter to the six raw
interferogram segments depicted previously in Figure 5. Interferogram
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Figure 12, Points 175-250 in the six interferogram segments of Figure 5 after
applying the 20-term filter computed by stepwise regression,
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Figure 13. Sum of squares after applying the 20-term filter vs. interferogram
number for each interferogram in a typical helicopter data run.
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Figure 14, Sum of squares after applying the 20-term filter vs. interferogram
number for each interferogram in a typical ground vehicle data runm.

segments 3, 5, and 6, thought to contain SFg information, are now clearly
different from the remaining segments, thought to contain no SFg information.

Figures 13 and 14 result from applying this filter to each interferogram
in two experimental runs. The interferogram used in the generation of the
filter was not taken from efther of these two runs. Before applying the
filter, each interferogram was normaiized based on the sum of squares of
points 175-250., After filtering points 175-250 in each interferogram, the sum
of squares was computed across the range of filtered points. In the figures,
the computed sums of squares are plotted vs. interferogram number. As
motivated by the discussion of Figures 9-11, the peaks in Figures 13 and 14
correspond to interferograms in which SFg information 1s present. The
interferograms used in the generation of Figure 13 were collected with the
spectrometer mounted on a helicopter flying at 80 knots and at an altitude of
1000 feet. The spectrometer was mounted on a ground vehicle moving at 10 mph
during collection of the data depicted in Figure 14, Both data sets used
represent worse-than-average helicopter and ground-based runs in terms of the
strength of the SFg signals present. Much higher signal-to-nofse 1s always
observed in the helicopter runs, as the spectrometer is looking at the target
gas agafinst the earth, a strong infrared radiator.

The center of the filter bandpass, the filter width, and the
interferogram segment used are parameters that must be optimized for each
spectral band investigated. The parameter values used above were selected
based on evaluations of what we term ideal filter responses. Across a data
run, this procedure involves Fourier transforming each interferogram,
mulitiplying the computed spectrum by the desired filter frequency response,
and then inverse transforming the filtered spectrum back to the interferogram
domain., The sum of squares is then computed on this ideally filtered
interferogram. A plot of the sums of squares vs. interferogram number can
then be evaluated in terms of signal-to-noise. This effectively evaluates the
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degree of optimization of the filter frequency response and the selected
interferogram segment. The frequency response and interferogram segment are
sought that maximize this signal-to-noise ratio.

This procedure assumes, of course, that a time-domain version of the
filter can be generated. Figure 15 depicts the ideal filter response across
the helicopter data set described above. Interferogram normalizatfion based on
the sum of squares of points 175-250 was used as before. The frequency
response and interferogram segment used were identical to that employed in the
generation of the 20-term filter. It is clearly evident from an inspection of
the figure that the computed time-domain filter cses not duplicate the
performance of 1ts frequency-domain counterpart.

The 1imitations of the stepwise regression procedure were further
{1lustrated when attempts were made to construct a multiple-bandpass filter
for OMMP, Very low correlation coefficients were observed in the regression
analysis.

FIR Matrix Filters. An inspection of eq. 1 reveals that each point on
the filtered interferogram 1s derived through the separate evaluation of the
convoluticn integral for that point. As noted previously, a time-domain
filter must approximate this convolution integral at each point. 1In a
conventional FIR filter, however, the same filter coefficfents and the same
surrounding points are used to define each filtered point. To achieve the
best approximation of the convolution integral, however, it can be argued that
a different filter model should be used at each point. For each point, such a
filter would have a different set of filter coeffictents and be based on a
different set of surrounding points.

0.129
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Figure 15. Sum of squares vs. interferogram number for the {deal response of
a Gaussfan filter centered at 941.1 cm~l and having a FWHM of 54.0 cm~l,
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By deriving separate filters to be used on each interferogram point, it
was hypothesized that the overall accuracy of the filtering process could be
increased. To parform the derivation of such a filter, however, a set of
interferograms must be employed. For example, a filter to be used on
interferogram point 175 must be derived through the use of point 175 across a
set of interferograms. It is clear that the use of a set of filters may offer
increased accuracy. It is also true that such a procedure may be faster
computationally. Since each filter is now performing a simpler task, fewer
terms in each filter may be needed.

The derivation of a set of filters is a direct extension of the stepwise
regression methodology discussed previously. Separate stepwise regressions
are performed, one for each interferogram point treated. The result of this
process is a set of filters stored as a matrix of filter coefficients. For
this reason, we have termed the resultant filter set a "matrix filter."

This methodology was tested by developing a matrix filter for SFg based
on the same frequency response and interferogram segment used above. Two
hundred interferograms from a ground-based data run were used in this
calculation. Interferogram normailization based on points 175-250 was used as
before. The pool of independent variables used at each point was defined as
k=0 to 70. To be judged significant, independent variables had to meet a 97%
E-criterion. The 97% criterion was used after discovering that a 95% E
allowed more terms into the models than were necessary. No performance drop-
off was observed in switching to a 97% cutoff. Subsequent re-investigation of
the 20-term standard FIR filter revealed that a 95% E cutoff was necessary in
that case to maintain filter performance.

In deriving the matrix filter coefficients, it was discovered that when
computations are carried out across a set of interferograms, the presence of
random low-frequency noise prevents the regression procedure from working
properly. For this reason, each interferogram was preprocessed with a 4-term
Tow-frequency cutoff filter to eliminate low-frequency notse.

Figures 16 and 17 depict the results of the regression procedure, Figure
16 is a plot of the percentage of varfance in the dependent variable explained
by each filter model vs. interferogram point number, while Figure 17 is a plot
of the number of filter terms required vs. interferogram point. With only a
few exceptions, the percentage of variance explained is high, Fourteen filter
terms are needed on average, with the largest filter requiring 21 terms. The
plot in Figure 16 reveals a periodic phenomenon that is presumably related to
the filter bandpass. As depicted in Figure 12, those points on the waveform
passed by the filter very nearly define a single cosine function. The points
near zero on this waveform would be expected to have low signal-to-noise. It
seems plausible that the regression computation for these points would be
dominated by random (i.e. uncorrelated) noise, thus resulting in a lower
percentage of variation explained.

To test this hypothesis, the computed matrix filter was applied to the
three SFg-active interferograms discussed previously in relation to Figures 5
and 12, The percentage of variance explained in the filter generation was
plotted vs. the corresponding intensity of each filtered point. This plot is
depicted in Figure 18. The general trend in the plot is for those points with
low percentages of variance explained to be associated with intensities near
zero. Correspondingly, there are no points near the extrema (0,04, -0.04)
that exhibit low correlation in the filter generation.

The generated matrix filter was tested by applying it to a number of
interferograms not included in the regression computation. As an initial
test, the filter was applied to the same six interferograms described
previously in the discussion of Figures 5 and 12. Figure 19 is a plot of
these interferogram after filtering. The SFg-active interferograms stand out
somewhat more cleanly in this plot than in Figure 12,
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Figure 16, Plot of percentage of variance explained vs. interferogram point.
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Figure 17. Plot of number of filter coefficients required vs. interferogram
point.
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Figure 18. Plot of percentage variance explained in the matrix filter
generation vs, intensity of filtered interferogram points.
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Figure 19. Plot of points 175-250 in six fnterferogram segments after
application of the matrix fiiter. Counting from the top, the third, fifth,
and sixth interferogram segments are thought to contafn SFg information,
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The filter was next applied to the helicopter and ground-based data runs
discussed in relation to Figures 13 and 14, The interferograms used in the
generation of the filter were not part of elther of these data sets, The 4-
term low-frequency cutoff filter was applied to each interferogram, and the
normalization procedure based on points 175~250 was applied. Following
application of the filter, the sum of squares was computed across points 175~
250, Figure 20 is a plot of the computed sum of squares vs. interferogram
number for the helicopter run, and Figure 21 is the corresponding plot for the
ground-based run., Figures 20 and 21 can be compared directly to Figures 13
and 14, respectively. From this comparison, it 1s clear that the matrix
filter produces superior resuits in terms of signai-to-noise.

An additional advantage of the matrix filter approach 1s found in the
point-by-point feedback from the regression procedure. Figure 16 indicates
that some points can be filtered more reliably than others, based on the
success of the filter generation procedure. An experiment was conducted 1n
which the 25 points below the 90% level in Figure 16 were eliminated from the
sum of squares calculation., Figures 22 and 23 are the resulting sum of
squares plots based on the remaining 51 points in the 175-250 segment. Figure
22 depicts the helicopter run, while Figure 23 depicts the ground-based run,
The signal-to-noise for these plots appears slightly better than that observed
for Figures 20 and 21, validating the point deletion procedure.

The matrix filter approach was also evaluated for its ability to generate
multiple bandpass filters. As noted previously, DMMP has three characteristic
spectral bands. Based on the ideal filter response procedure outlined for
SFg» the three-band frequency response depicted in Figure 24 was judged
optimum. The ideal response for this filter {s depicted in Figure 25, Based
on an inspection of spectra, interferograms 277-360 are thought to contain
DMMP signals. Interferogram points 175-250 were again found to be optimum.
One modification to the previous procedure was required, however, In the
investigation of the DMMP ideal response, interferogram normalization based on
the entire interferogram (points 1~1024) was found to produce markedly better
results than normalization based sclely on points 175-250, The reason for
this discrepancy with the SFg results is unclear. Unfortunately, only a very
1imited amount of passive FTIR DMMP data is available to help pinpoint this
phenomenon. This problem is made worse by very low signal-to-noise ratios in
the avaflable DMMP interferograms.

The matrix filter for DMMP was computed based on 200 interferograms. The
interferograms were normalized based on points 1-1024, and the 4-term low-
frequency cutoff filter was applied as before. The pool of independent
variables used was defined by k=0 to 70, Varfables had to meet a 95% [
criterion in order to enter the filter models., The computed filter exhibited
significantly lower values for the percentage of varfance explained in the
dependent variable than the filter computed previously for SFg. Figure 26 is
a plot of percent variance explained vs. interferogram point, while Figure 27
plots the number of filter terms required vs. interferogram point., A more
complex structure 1s seen in Figure 26 than was seen in the corresponding plot
for the SFg filter, although a definite pattern exists. The filters average
nine terms. These models are smaljer than those computed for SFg, as fewer
terms in the DMMP calculation met the fF-criterion. Relaxing the E-criterion
for the entry of varifables increases the sizes of the models, but the
percentage of variance explained does not increase significantly and the
larger models do not exhibit better performance. We feel the low signal-to-
noise of the DMMP interferograms is being manifested in the overall lower
correlations and the smaller number of statistically significant variables.

Following the procedure found useful for the SFg matrix filter, those
points exhibiting low percentages 1n Figure 26 were not included in the sum of
squares calculation after application of the fiiter. An 80% cutoff was chosen
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Figure 20. Sum of squares over points 175-250 after applying the matrix
filter vs. interferogram number for the helicopter-based data run,
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Figure 21. Sum of squares over points 175-250 after applying the matrix
filter vs. interferogram number for the ground-based data run.
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Figure 22, Sum of squares over 51 points exceeding the 90% variance cutoff
vs. interferogram number for the helicopter-based data run.
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Figure 23, Sum of squares over 51 points exceeding the 90% variance cutoff
vs, interferogram number for the ground-based data run.
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Figure 24. F-equency response function for the DMMP matrix filter,
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Figure 25. Sum of squares over pofnts 175~250 vs. interferogram number
for the ideal response of the DMMP filter.
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Figure 26. Plot of percentage of varfance in the dependent variable explained
vs. interferogram point for the DMMP matrix filter.
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Figure 27, Plot of number of filter terms vs. interferogram pofnt for the
DMMP matrix filter.
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Figure 28, Sum of squares over 47 points exceeding the 80% variance cutoff
vs. interferogram number for the DMMP data run,

arbitrarily after an inspection of the figure. Forty-seven points remained
after applying this cutoff. Figure 28 is a plot of the sum of squares over
these points after filtering vs. interferogram number for a ground-based DMMP
data run. Due to the small quantity of DMMP data available, the
interferograms used in the filter generation were derived from this data set.
The overall signal-to-noise ratio of this plot 1s greater than that of the
ideal plot. We believe this is due tc the identification and deletion of Tow
signal-to-noise points from the sum of squares calculation.

Comparison of SFs Eilter Performance. The filtering results
presented above are best compared in a quantitative manner. This comparison
was made based on two criterfa: (1) signal-to-noise ratio of the sum of
squares plots and (2) computational efficiency. Based on inspections of
transformed spectra, SFg-active regions were established in both the
helicopter and ground-based data runs., A baseline set of 200 interferograms
was selected in each data set from among those interferograms judged to
contain no SFg. For each plot, the sum of squares values for these baseline
interferograms were used to compute a standard RMS noise level. In addition,
simple 1inear regressfon was used to define a baseline model for each plot.
For each interferogram in the SFg~active regions, the baseline model was used
to compute a predicted baseline value, and the difference was computed between
the sum of squares value for the interferogram and the baseline value. The
ratic of this difference to the RMS noise was taken as the signal-to-noise
ratio. This computation corrects for sloping baselines.

Table I is a signal-to-noise comparison of the plots produced by the
standard and matrix FIR filters for the SFg helicopter-based data run. The
signal-to-noise computation described above was used in the generation of the
table entries. Five SFg-active regions were found in this data set,
corresponding to interferograms 231-246, 320-333, 419-427, 532-535, and 599-
605, Table II presents the corresponding information for the SFg ground-based
run. One SFg-active region was found, corresponding to interferograms 358-
387.
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Table I
Signal-to-Noise Comparison of Filter Performance

SFg Helicopter-Based Data

(Based on Sum of Squares After Filtering)

Signal-to-Noise Ratio for Interferogram Regfon

Filter 231-246 320-333 419-427 532-535 599~-605
Ideal response 73.48 79.30 57.39 47,62 68.02
20-term standard FIR 34,06 36.33 26.46 23,68 30.37
Matrix FIR, 76 points 61.41 59.25 52,66 38,85 69,32
Matrix FIR, 51 points
based on 90% cutoff 81.68 78.47 69.53 49,39 90,82
Table II

Signal-to~-Noise Comparison of Filter Performance

SFg Ground-Based Data

(Based on Sum of Squares After Filtering)

Signal-to~Noise for Interferograms

Filter 358~-387
Ideal response 11.34
20-term standard FIR 4,69
Matrix FIR, 76 points 19,55
Matrix FIR, 51 points

based on 90% cutoff 22.90
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An inspection of Tables I and II serves to reinforce the conclusions
reached from a visual inspection of the filtering results. The matrix FIR
filter significantly outperforms the standard FIR filter. This is
particularly evident in the low signal-to-noise data found in the ground-based
data run. Furthermore, the deletion of poorly modeled points from the sum of
squares calculation significantly enhances the signal-to-noise ratios of the
plots. The matrix filter methodology 1s thus judged supericr in terms of its
ability to extract low-signal spectral information,

One unexplained phenomenon is seen in the matrix filter producing higher
signal-to-noise than the corresponding ideal response for the ground-based
data. This can be explained when points are deleted from the matrix filter
sum of squares calculation based on the argument that the deleted points
contain 1ittle signal information. For the ground-based data, however, the
matrix filter response over points 175-250 has higher signal-to-noise than the
ideal response over the same points. This phenomenon remains under
investigation,

Table III compares the standard and matrix filter approaches to the FFT
in terms of the number of multiplications required. Also indicated is the
percentage reduction in number of muitiplications gained when each of the
filter approaches 1s used in place of the FFT. The matrix fiiter based on 51
points 1s the fastest of the three filters. Its use in place of the FFT
effectively results in a 90% savings in the number of multipiications
required. These results further validate the selection of the matrix filter
based on selected interferogram points as the best available filtering
methodology for the passive FTIR application,

Quantitative Nature of Filter Responses. The discussion of Figures 8-11
indicated that quantitative information may be present in the intensity of the
filtered interferogram segments. Conventional thinking in passive FTIR has

Table III

Comparison of Computational Efficfency

Number of
Operation Multiplications % Savings Over FFT

1024-point Cooley-Tukey FFT 10240 0.0
20-term standard FIR on

points 175-250 1520 85.2
*SFg Matrix FIR on

points 175-250 1394 86.4

'SF5 Matrix FIR on 51 points

based on 90% cutoff 1065 89.6

*Includes multiplications for 4-term low-frequency cutoff filter.
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held that quantitative determinations are not possible. For this reason,
emphasis has been placed on the development of active infrared sensors based
on COp lasers. The ranging capability of the laser systems allows a remote
concentration-path length (CL) determination to be made for a target analyte.

The placement of a passive FTIR sensor in an airborne vehicle makes
quantitative determinations feasible, however., If the 1nput optics of the
spectrometer are directed at the ground, effectively all of the infrared
energy entering the interferometer arises from ground emission. For an
aircraft in level flight, this translates to a fixed path length for the
spectroscopic determination, directly analogous to a fixed-source laboratory
experiment. Moreover, the altimeter of the aircraft provides a direct measure
of the path length.

It would thus seems feasible to develop quantitative calibrations for
target analytes. Toward that end, we have evaluated the quantitative
information present in filtered interferogram segments. Figure 29 is a plot
of points 175-250 in six interferograms derived from the heljcopter-based data
run at 1000 ft. Figure 30 depicts the region of 920-970 em~l in the
transformed spectra arising from these interferograms. No SFg can be detected
in the topmost spectrum, but increasing levels of SFg are present in the lower
spectra. Figure 31 is a plot of points 175-250 after application of the SFg
matrix filter. The intensity of the filtered signals increases from the top
to bottom of the plot in agreement with the observed spectra.

To evaluate this apparent quantitative information, the spectral bands in
Figure 30 were integrated by estimating the baseline across each band and
integrating between the baseline and the band. The magnitude of each filtered
segment was computed by taking the square root of the sum of the squares of
the intensities. Figure 32 is a plot of the computed magnitudes of the
filtered segments vs. the computed areas of the corresponding spectral bands.
The individual points are shown, as well as the regression line derived from
the points. The plot is highly 1inear. Linear regression reveals that 99.0%
of the varfance in the dependent variable 1s explained by the derived 1inear
model. The computed t-value for the significance of the slope of the plot is
19,47, A t-value greater than 4.0 is considered strong. In addition,
significant dynamic range is available in the plot between the smallest SFg
band and the baseline point (no SFg). These results confirm that a
quantitative calibration can be obtained directly from information in the
filtered interferogram segments. When coupled with an afrcraft-based
application, the quantitative determination of target analytes by passive FTIR
seems totally feasible,

Pattern Recognition Methodology Based on Eiltered Interferogram Segments

Qverview of Methodology. The digital filtering methodology described
above effectively serves as a data preprocessing tool to reduce a collected
interferogram to an interferogram segment that has been treated (i.e. windowed
and filtered) to enhance the information regarding the presence of a targeted
spectral band. The next processing step for a passive FTIR sensor is a
decision-making step: Does the filtered segment indicate that the target
analyte is present? If the analyte 1s present, an alarm is presumably
triggered., If the analyte {is not present, nothing 1s done.

Decision-making algorithms for numerical data are termed pattern
recognition procedures. A1l such algorithms are based on two premises: (1)
that one or more specific data categories or "classes"™ can be defined; and (2)
that data vectors of representative members of each of these classes are
avaijable. In general, pattern recognition algorithms use this known,
representative data to produce some type of mathematical construct (vector,
model, etc.) that yields a numerical response when applied to an input data
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Figure 29. Points 175-250 in six interferograms derfved from the helicopter-
based data run at 1000 ft.
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Figure 30, The region from 920-~970 cm~l in the spectra derived from the
interferograms in Figure 29, The SFg band increases in area from the top to
the bottom of the plot,
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Figure 31. Points 175-250 in the six interferograms after application of the
SFg matrix filter.
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Figure 32, Plot of the magnitude of the filtered interferogram segment vs.
integrated area of the SFg spectral band. The 11ne shown was derived from the
data points by regression analysis,
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vector or "pattern.” The numerical response produced is interpreted to
determine to which data class the input pattern belongs. For a two-class
pattern recognition problem, this interpretation effectively ylelds a yes-no
response. For a given target analyte in the passive FTIR application, two
data classes exist, corresponding to target-containing interferograms and
"clean" interferograms. For the work reported here, the input patterns are
filtered interferogram segments.

A1l pattern recognition methods explore the multidimensional "pattern
space™ defined by the input patterns, The patterns selected as representative
of the data classes (the "training set") are used to characterize the regions
of this space M"occupied™ by the defined data classes. Two general approaches
can be taken to this investigation.

In one method, the characteristic region of a given class can be modeled,
producing a vector space model that spans the region of the class. Unknown
patterns are fitted to (i.e. projected onto) the class models to determine 1if
they 1ie in the same region of space. The SIMCA method of Wo1dl6 is an
example of this approach,

The second basic pattern recognition approach attempts to model the
region between data classes, thereby establishing separating boundaries.
These separating boundaries are termed discriminants, and the overall
procedure 1s termed discriminant ana1y51517. The boundary is typically
defined as an (n-l)-dimensional hyperplane, where n is the dimensionality of
the patterns. Mathematically, the hyperplane is defined by an n-dimensional
vector, w, that 1s orfented normal to the surface of the hyperplane. The
vector, w, is often termed a "weight vector." For a two-class problem, only
one such vector 1s needed. Unknown patterns are assigned to a data class by
determining on which side of the boundary they 1ie. This calculation is
defined by

d= wix (4)

where w! {s the transpose of w, x is the input pattern vector, and the scalar
value, d, is termed the discriminant score. If w i{s scaled to unit length,
the sign of d determines on which side of the boundary x 1ies. Iterative
numerical optimization procedures are typically used to define w, given the
{nput set of patterns deemed representative of the data classes.,

For the passive FTIR problem, the variety of possible infrared
backgrounds dictates that a large set of patterns be used if any serious
attempt 1s to be made to define a pattern space that is truly representative.
Thus, the selection of a specific pattern recognition approach must be based
largely on the feasibility of the method for use with a large data set.
Methods based on the construction of 1inear discriminants are more easily
applied to a large data set than are the class modeling techniques. For this
reason, these methods have been used in the feasibility studies reported here.

Construction of Linear Discriminants. Data from two ground-based and
three helicopter-based experimental runs were assembled to define a
representative set of interferograms for the pattern recognition feasibility
study. A total of 449 SFg-active and 551 inactive interferograms were
selected, defining a total data set of 1000 interferograms. These
interferograms were categorized as either SFg-active or inactive based on
inspections of the corresponding transformed spectra. Interferograms were
sought with SFg levels ranging from very strong to the 1imit of detection.
Since some interferograms with very weak SFg signals were sought, some
discrepancies may exist 1n the actual class{fication of the 1000
interferograms as active or inactive.

For the feasibility study reported here, the pattern vectors used were
defined in a straightforward manner, Points 175-250 in the interferograms
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were filtered by use of the SFg matrix filter described previously. The
filtered segments could not be used directly for pattern recognition, as the
information pertaining to absorption and emission bands is 180 degrees out of
phase (see discussion of Figures 9-11). This results 1n sign differences for
the individual filtered points. For this reason, two data transforms for
removing sign information were tested. As a first test, the values in the
filtered segments were squared, employing a strategy similar to that used in
the sum~of-squares vs. interferogram number plots presented previously.
Second, the absolute value was taken across the filtered segment. In
comparing the results of these transforms, the absolute value transform was
found to yleld the best results in the pattern recognition trials, It is
hypothesized that this transform is superior, as it is a linear transform. As
indicated by eq. 4, the discriminants developed here are also l1inear. The
nonlinear effects of the squaring operation do not seem to be compatible with
the use of 1inear discriminants.,

The 1000 76-point transformed pattern vectors were submitted to a
standard discriminant optimization procedure. This iterative procedure
produced a weight vector that could place 981 of the 1000 interferograms in
the correct class (active vs. inactive)., The 19 misclassified patterns (9
active, 10 inactive) appear to define the 1imit of detection.

Jesting of Computed Discriminant. The computed linear discriminant was
tested by applying it to interferograms in several experimental runs. In each
case, a plot was made of discriminant score vs. interferogram number. The
discriminant score used for plotting was taken as the mean of the current
computed score and the computed score of the previous interferogram. This
effectively applies a two-point moving-average filter to the discriminant
scores. This procedure decreases the incidence of false alarms by
downweighting the effects of single interferograms on the alarm status.

The discriminant was first applied to two of the experimental runs from
which interferograms were extracted for the discriminant development. Figure
33 is a plot of the computed two-point mean discriminant score vs.
interferogram number for a ground-based run, while Figure 34 is a
corresponding piot for a helicopter-based run., Those discriminant scores
exceeding 0.0 would trigger an alarm for the presence of SFg. Each of the
interferograms for which an alarm 1s clearly indicated does appear to contain
SFg 1nformation.

Figures 35 and 36, respectively, depict discriminant score plots for the
helicopter-based and ground-based experimental .uns used previously in the
evaluation of filter performance. None of these interferograms were included
in either the filter or discriminant development work. Again, the SFg-active
interferograms are clearly distinguished from the inactive interferograms.
Although one false-alarm is seen in the helicopter-based run and two are seen
in the ground-based run, this false-alarm rate represents only an 0,24%
occurrence. Based on these results, standard pattern recognition procedures
appear completely compatible with filtered interferogram segments.

Similar pattern recognition trials were then performed with pattern
vectors formed from the reduced set of 51 points found during the matrix
filter development work. The same set of 1000 interferograms was used, and
the absolute value transform was applied as before. The best weight vector
obtainable classified only 850 of the 1000 interferograms correctly, however,
Subsequent application of this weight vector to the test data runs revealed
much poorer discrimination than was observed with the 76-point discriminant.

Results obtained during the development of the matrix filter indicated
that the 25 interferogram points deleted possessed low signal-to-noise for the
sum of squares calculation. Such points may be useful for discrimination,
however, if the active or fnactive interferograms take on characteristic
values for the points. This question was investigated 'y plotting the
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Figure 33, Two-point mean discriminant score vs. interferogram number for a
ground-based data run. Of these interferograms, 392 were used in the
discriminant development.
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Figure 34, Two-point mean discriminant score vs. interferogram number for a
helicopter~based data run, Of these interferograms, 137 were used in the
discriminant development.
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Figure 35, Two-point mean discriminant score vs. interferogram number for a
helicopter-based data run. None of these interferograms were used in the
discriminant development.
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Figure 36. Two~point mean discriminant score vs. interferogram number for a
ground~based data run. None of these fnterferograms were used in the
discriminant development.
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percentage of the variance in the dependent variable explained in the matrix
filter computation vs. the corresponding computed discriminant value for the
point. This plot is depicted in Figure 37.

The discriminant values take on both positive and negative quantities,
corresponding to additive and subtractive terms in the summation of the
overall discriminant score (eq. 4). Nineteen of the 25 points corresponding
to less than 90% variance explained have negative discriminant values. Of the
six positive discriminant values, five are less than 0.1, giving them Tow
overall weight in the determination of the discriminant score. The points
with negative discriminant values contribute to lowering the discriminant
score (i,e. leading to an inactive classification of the interferogram). In
considering this point, note that the absolute value transform causes all
values in the pattern vector to be positive.

These results confirm that for pattern recognition purpcses, greater
discrimination between active and inactive interferograms {is found by
Including all of the points in the interferogram segment. In this example,
the inactive interferograms appear to have large values at the points
corresponding to low percentage variance explained. These large values would
be expected to lower signal-to—-noise in the sum-of-squares plot. For the
pattern recognition procedure, however, they help to improve the
discrimination between active and inactive interferograms. This {llustrates
the power of having both additive and subtractive information in a
discriminant calculation. For this reason, discriminants typically outperform
simpler procedures such as applying an alarm threshold to sum of squares plots
of the type generated during the filter development work.
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Figure 37. Plot of percentage varfance explained in the matrix filter
calculation vs. computed discriminant value for interferogram points 175-250.
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Critical Evaluation of Time-Domain Methodology

The concepts described above for time-domain processing of passive FTIR
data have been presented to several groups of knowledgeable FTIR
spectroscopists. Two criticisms of the approach have been commonly raised and
need to be addressed.

Questions of Spectral Resolution. It has been argued that the use of a
short interferogram segment l1imits the analysis to only low-resolution
spectral information. This argument is based on the standard FTIR principle
that a higher resolution spectrum is obtained by collecting a longer
interferogram. This argument is invalid on two grounds.

First, in conventional FTIR, a longer interferogram must be collected to
obtain high resolution information due to 1imitations of the FFT algorithm,
The FFT assumes the input waveform has the value zero outside the sampled
region. Thus, the algorithm treats a short interferogram segment as a
harmonic waveform that has been convolved with a boxcar function. The
transform thus contains sin x/x components corresponding to the transform of
the boxcar function, In practical terms, this results in a seriously
broadened spectrum if the sampled interferogram segment is short. As an
example, the top spectrum in Figure 38 is the result of applying the FFT to a
76-point interferogram segment. This interferogram consisted of a single
cosine frequency at 941.1 em~l, The transform should yleld a single spike at
that frequency. The resultant spectrum {s greatly broadened, however. The
lower plot in the figure 1s the spectrum resulting from applying an
alternative transform technique to the 76-point segment. The autoregressive
transform algorithm of Marp‘le18 attempts to model the frequencies in the {input
waveform, No assumption 1s made about the character of the waveform outside
the sampled region. The resultant spectrum is very close to a single spike.

A long interferogram is required only when the FFT is being used to extract
high-resolution information. Arguments based on inherent characteristics of
the FFT clearly do not apply when the FFT is not used.

Second, the discussion of Figures 9-11 clearly indicated that information
pertaining to spectral features of different widths is present in different
concentrations at different points in the interferogram. As shown in the
figures, the information pertaining to the spectral band of interest is
dominant when other features (e.g. the overall filter bandpass shape) have
damped out. The selection of an appropriate interferogram segment is purely
based on the spectral signature within the filter bandpass. Thus, in the time
domain, questions of resolution are directed to Jocation within the
interferogram, rather than to the size of the interferogram segment. If a
single spectral %and {s being extracted with a digital filter, the
interferogram region of points 175-250 seems close to optimum for the typical
widths of major bands 1n organic molecules.

Effects of Phase Errors. Phase errors result from deviations in the
sampling points along the time axis of the interferogram. Most often, these
are fractional point shifts that cause the interferogram to be slightly out of
registration. In spectral-based processing, phase errors most often result in
small spectral artifacts. A phase correction algorithm is typically applied
in conjunction with the FFT to remove these artifacts. In time-domain
processing, however, phase errors are potentially more damaging, as great
dependence 1s placed on correct positioning within the interferogram., The use
of single-point matrix filters places further demands on proper registration
of the interferogram,

During the development work described in this report, no obvious
deleterious effects due to interferogram phase errors have been observed. We
are of the belief that most phase errors encountered are fractional point
shifts that do not seem to have great effect. An experiment was conducted,
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Figure 38. Transformed spectra corresponding to a 76-point segment taken from
an interferogram composed of a single cosine frequency (941.1 em~ly, Top:
the spectrum resulting from application of the FFT. Bottom: the spectrum
resulting from application of the autoregressive algorithm of Marplela.

however, to test the effects of catastrophic phase errors on the pattern
recognition results. This experiment focused on the helicopter- and ground-
based data sets whose discriminant score plots were presented in Figures 35
and 36, respectively. For each interferogram, a different point in the regfon
of points 175-250 was selected randomly and deleted. The interferogram was
then compressed to simulate a point being skipped while sampling the
interferogram. The matrix filter and computed discriminant were then applied
to the interferogram as if nothing untoward had happened. Figures 39 and 40
are the resulting discriminant score plots for the helicopter- and ground-
based data sets, respectively.

The plots of discriminant scores are noisier than before, but the SFg-
active interferograms are still clearly indicated. Several additional false
alarms are now indicated in the ground-based plot, but overall, the serious
phase errors introduced do not destroy the detection capability of the
algorithm, When it is considered that the majority of phase errors
encountered are less severe than those created here, it can be argued strongly
that the current time-domain algorithm 1s sufficiently resistant to phase
errors to be usable.

Source of False Alarms. In a final evaluation of the time-domain
processing algorithm, interferograms generating false alarms were investigated
to determine the cause of the false alarms. Those interferograms generating a
discriminant score just above 0.0 tend to have a noisy spectral baseline
across the fi1lter bandpass. This causes the filtered interferogram segment to
be similar to that obtafned from a trace level of SFg. Those false alarms
assocfated with discriminant scores significantly greater than 0.0 tend to
result from some hardware malfunction during collection of the interferogram.
The false alarm at interferogram 503 in Figure 35 is one such example. Figure
4] {s the complete transformed spectrum of this interferogram. In processing
this interferogram, the huge low-frequency noise spike seen in the spectrum
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Figure 39, Two-point mean discriminant score plot for the helicopter-based
data run after introduction of catastrophic phase errors.

DISCRIMINANT SCORE

-8.014

Figure 40. Two-point mean discriminant score plot for the ground-based data
run after introduction of catastrophic phase errors,
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Figure 41. Transformed spectrum of interferogram 503 in Figure 35. The large
low-frequency noise spike leads to a false alarm.

saturated the low-frequency cutoff filter used prior to the matrix filter. A
significant amount of low frequency noise was left in the interferogram,
ultimately leading to the false alarm., This example illustrates a probliem
with time~-domain processing. If the digital filters in use break down, false
alarms may result. This interferogram would 1ikely not give rise to a false
alarm 1n a spectral-based processing scheme. Some means for detecting these
catastrophic phenomena needs to be included in the time-domain processing to
prevent false alarms of this type from occurring.

CONCLUSIONS

The results presented in this report confirm the practicality of an
interferogram—-based processing procedure for passive FTIR data. The
development of matrix filters represents a fundamentally new approach to
signal processing of time-domain data. The high accuracy of the filters
allows the center and width of the fiiter bandpass to be determined precisely.
In addition, easing the demands on indfvidual filters reduces the number of
coefficients within those filters, resulting in large savings in computation
time. In this regard, it should be stressed that the savings in computation
time reported in Table III assume that a spectral-based analysis requires anly
an FFT. In reality, spectral phase correction would be used, along with some
type of spectral subtraction and/or digital filtering. Therefore, the quoted
savings 1n computation time are copservative.

The significance of this work can be seen in two areas. First, the
ability to use only a small set of discrete interferogram points makes
possible a new generation of passive FTIR sensors in which only a short
interferogram segment is collected. Such an instrument could be buiit around
a simpler interferometer than is currently used, thereby increasing the
relfabi1ity of the sensor and decreasing its cost. The reductfon in
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computational requirements simplifies the required computer hardware in an
analogous manner,

The second point of significance to the work is the elimination of the
requirement for subtraction of a backaround spectrum. The two target analytes
used, SFg and DMMP, were both detected under rapidly changing infrared
backgrounds. The filter-based processing strategy should therefore feature
increased resistance to background changes over a spectral subtraction
approach.

In summary, the research described here provides new capabilities for the
analysis of data from passive FTIR sensors. When coupled with recent advances
in FTIR instrumentation, it should now be completely feasible to configure a
small, economical toxic gas alarm system for both stationary and mobile
monitoring applications.

RECOMMENDATIONS

In effect, this report describes a feasibil1ity study directed at
evaluating the potential of an interferogram-based processing scheme for
passive FTIR data, Without question, the work indicates that such a scheme is
feasible. For the algorithm to be made ready for actual implementation,
however, three areas of further investigation are most important.

First, the resistance of the methodology to chemical interferents must be
addressed., In this regard, we refer to interferents whose spectral features
11ie within the filter bandpass of a given target analyte. Testing of the
methodology with a variety of analyte/interferent combinations is essential.

Second, a formalized optimization study must be performed to establish
which interferogram points should be used in the time-domain processing. Work
performed to date indicates that the optimum interferogram segment depends on
the center and width of the filter bandpass. Therefore, for each analyte
to be detected, these three variables must be optimized. The development of
formalized procedures for performing this optimizatifon is critical to the
optimization of the overall time-domain processing scheme.

Lastly, for the discriminant development work, the effects of training
set size must be addressed. Practical 1imits need to be established for the
necessary size of the training set. In addition, an algorithm for the
selection of tratning set members must be developed. These considerations
are very important 1f the discriminant values are to be firmly established.

In conclusion, studies such as those outlined above will serve to refine
the methodology. We are of firm belfef that the time-domain processing
concepts are sound., Work must now proceed to optimize the specific procedures
used,
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